5 research outputs found

    Opening the Software Engineering Toolbox for the Assessment of Trustworthy AI

    Get PDF
    Trustworthiness is a central requirement for the acceptance and success of human-centered artificial intelligence (AI). To deem an AI system as trustworthy, it is crucial to assess its behaviour and characteristics against a gold standard of Trustworthy AI, consisting of guidelines, requirements, or only expectations. While AI systems are highly complex, their implementations are still based on software. The software engineering community has a long established toolbox for the assessment of software systems, especially in the context of software testing. In this paper, we argue for the application of software engineering and testing practices for the assessment of trustworthy AI. We make the connection between the seven key requirements as defined by the European Commission’s AI high-level expert group and established procedures from software engineering and raise questions for future work.publishedVersio

    Evaluating the Robustness of Deep Reinforcement Learning for Autonomous and Adversarial Policies in a Multi-agent Urban Driving Environment

    Full text link
    Deep reinforcement learning is actively used for training autonomous and adversarial car policies in a simulated driving environment. Due to the large availability of various reinforcement learning algorithms and the lack of their systematic comparison across different driving scenarios, we are unsure of which ones are more effective for training and testing autonomous car software in single-agent as well as multi-agent driving environments. A benchmarking framework for the comparison of deep reinforcement learning in a vision-based autonomous driving will open up the possibilities for training better autonomous car driving policies. Furthermore, autonomous cars trained on deep reinforcement learning-based algorithms are known for being vulnerable to adversarial attacks. To guard against adversarial attacks, we can train autonomous cars on adversarial driving policies. However, we lack the knowledge of which deep reinforcement learning algorithms would act as good adversarial agents able to effectively test autonomous cars. To address these challenges, we provide an open and reusable benchmarking framework for systematic evaluation and comparative analysis of deep reinforcement learning algorithms for autonomous and adversarial driving in a single- and multi-agent environment. Using the framework, we perform a comparative study of five discrete and two continuous action space deep reinforcement learning algorithms. We run the experiments in a vision-only high fidelity urban driving simulated environments. The results indicate that only some of the deep reinforcement learning algorithms perform consistently better across single and multi-agent scenarios when trained in a multi-agent-only setting

    Adversarial Deep Reinforcement Learning for Improving the Robustness of Multi-agent Autonomous Driving Policies

    Full text link
    Autonomous cars are well known for being vulnerable to adversarial attacks that can compromise the safety of the car and pose danger to other road users. To effectively defend against adversaries, it is required to not only test autonomous cars for finding driving errors, but to improve the robustness of the cars to these errors. To this end, in this paper, we propose a two-step methodology for autonomous cars that consists of (i) finding failure states in autonomous cars by training the adversarial driving agent, and (ii) improving the robustness of autonomous cars by retraining them with effective adversarial inputs. Our methodology supports testing ACs in a multi-agent environment, where we train and compare adversarial car policy on two custom reward functions to test the driving control decision of autonomous cars. We run experiments in a vision-based high fidelity urban driving simulated environment. Our results show that adversarial testing can be used for finding erroneous autonomous driving behavior, followed by adversarial training for improving the robustness of deep reinforcement learning based autonomous driving policies. We demonstrate that the autonomous cars retrained using the effective adversarial inputs noticeably increase the performance of their driving policies in terms of reduced collision and offroad steering errors

    19th Sir peter freyer memorial lecture and surgical symposium 16th and 17th September 1994

    No full text
    corecore